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Abstract: We point out that resonance saturation in QCD can be understood in the

large-Nc limit from the mathematical theory of Pade Approximants to meromorphic func-

tions. These approximants are rational functions which encompass any saturation with a

finite number of resonances as a particular example, explaining several results which have

appeared in the literature. We review the main properties of Pade Approximants with the

help of a toy model for the 〈V V − AA〉 two-point correlator, paying particular attention

to the relationship among the Chiral Expansion, the Operator Product Expansion and the

resonance spectrum. In passing, we also comment on an old proposal made by Migdal

in 1977 which has recently attracted much attention in the context of AdS/QCD models.

Finally, we apply the simplest Pade Approximant to the 〈V V −AA〉 correlator in the real

case of QCD. The general conclusion is that a rational approximant may reliably describe

a Green’s function in the Euclidean, but the same is not true in the Minkowski regime due

to the appearance of unphysical poles and/or residues.
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1. Introduction

The strong Chiral Lagrangian is a systematic organization of the physics in powers of

momenta and quark masses, but requires knowledge of the low-energy constants (LEC)

to make reliable phenomenological predictions. As with any other effective field theory,

these LECs play the role of coupling constants and contain the information which comes

from the integration of the heavy degrees of freedom not explicitly present in the Chiral

Lagrangian (e.g. meson resonances).

At O(p4) there are 10 of these constants [1]. Although at this order there is enough

independent information to extract the values for these constants from experiment, this

will hardly ever be possible at the next order, O(p6), because the number of constants

becomes more than a hundred [2]. In the electroweak sector the proliferation of constants

appears already at O(p4) [3]. Although in principle these low-energy constants may be

computed on the lattice, in practice this has only been accomplished in a few cases for the

strong Chiral Lagrangian at O(p4), and only recently [4].

The large Nc expansion [5] stands out as a very promising analytic approach capable

of dealing with the complexities of nonperturbative QCD while, at the same time, offering

a relatively simple and manageable description of the physics. For instance, mesons are

qq states with no width, the OZI rule is exact and there is even a proof of spontaneous

chiral symmetry breaking [6]. Furthermore, its interest has recently received a renewed

boost indirectly through the connection of some highly supersymmetric gauge theories to

– 1 –



J
H
E
P
0
5
(
2
0
0
7
)
0
4
0

gravity [7], although the real relevance of this connection for QCD still remains to be seen.

However, in spite of all this, the fact that no solution to large-Nc QCD has been found keeps

posing a serious limitation to doing phenomenology. For instance, in order to reproduce the

parton model logarithm which is present in QCD Green’s functions in perturbation theory,

an infinity of resonances is necessary whose masses and decay constants are in principle

unknown.

On the other hand, QCD Green’s functions seem to be approximately saturated by

just a few resonances; a property which has a long-standing phenomenological support

going all the way back to vector meson dominance ideas [8], although it has never been

properly understood. In a modern incarnation, this fact translated into the very successful

observation [9] that the strong LECs at O(p4) seem to be well saturated by the lowest meson

in the relevant channel,1 after certain constraints are imposed on some amplitudes at high-

energy in order to match the expected behavior in QCD [11, 12]. It was then realized that all

these successful results could be encompassed at once as an approximation to large-Nc QCD

consisting in keeping only a finite (as opposed to the original infinite) set of resonances

in Green’s functions. This approximation to large-Nc QCD has been termed Minimal

Hadronic Approximation (MHA) [13 – 15] because it implements the minimal constraints

which are necessary to secure the leading non-trivial behavior at large energy of certain

Green’s functions through the marriage of the old resonance saturation and the large-Nc

approximation of QCD. In recent years, a large amount of work has been dedicated to

studying the consequences of these ideas [16].

However, the high-energy matching with a finite set of resonances, first suggested

in [11], makes it clear that the treatment is not amenable to the methods of a conventional

effective field theory. An effective field theory is an approximation for energies smaller than

a heavy particle’s mass and, therefore, cannot deal with momentum expansions at infinity

as in the case of the Operator product Expansion (OPE). In other words, the fact that the

set of resonances in each channel is really infinite precludes the naive expansion at large

momentum because there is always a mass in the spectrum which is even larger. The sum

over an infinite set of resonances and the expansion for large momentum are operations

which do not commute [17]. In those Green’s functions containing a contribution from

the parton model logarithm, this is made self-evident since a naive expansion at large

momentum can only produce powers and not a logarithm, which is why large-Nc QCD

requires an infinity of resonances in the first place.

The problem can be delayed one power of αs if one requires the use of the resonance

Lagrangian [9] to be limited only to Green’s functions which are order parameters of spon-

taneous chiral symmetry breaking. These order parameters vanish to all orders in αs in

the chiral limit2 and, therefore, avoid the presence of the parton model logarithm which,

otherwise, would preclude from the outset any matching to a finite number of resonances.

However, the concept of a Lagrangian whose validity is restricted only to a certain class

of Green’s functions has never been totally clear; and even if the resonance Lagrangian

1This is less clear in the scalar channel, however. See ref. [10]
2E.g., the two-point correlator 〈V V − AA〉.
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is restricted by definition to order parameters, the problem surfaces again in the presence

of logarithmic corrections from nontrivial anomalous dimensions, which make the exact

matching at infinite momentum impossible.

In a slightly different context, a somewhat similar observation was also made in ref. [18].

In this paper it was observed that it is impossible to satisfy the large momentum fall-off

expected in large-Nc QCD for the form factors which can be defined through a three-point

Green’s function, if the sum over resonances in the Green’s function is restricted to a

finite set. Interestingly, this again pointed to an incompatibility of the QCD short-distance

behavior with an approximation to large Nc which only kept a finite number of resonances.

A further piece of interesting evidence results from the comparison between the analysis

in refs. [19] and [11]. After imposing some good high-energy behavior in several Green’s

functions and form factors including, in particular, the axial form factor governing the decay

π → γeν, ref. [11] obtains, keeping only one vector state V and one axial-vector state A, that

their two masses must be constrained by the relation MA =
√

2MV . The work in ref. [19],

on the contrary, does not use the axial form factor and obtains, after performing a very

good fit within the same set of approximations, the precise values MV = 775.9 ± 0.5 MeV

and MA = 938.7 ± 1.4 MeV. These values for the masses, although close, are not entirely

compatible with the previous relation. In other words, the short-distance constraint from

the axial form factor is not fully compatible with the short-distance constraints used in [19]

if restricted to only one vector and one axial-vector states.3

In this paper we would like to suggest that all the above properties can be understood

if the approximation to large Nc QCD with a finite number of resonances is reinterpreted

within the mathematical Theory of Pade Approximants (PA) to meromorphic functions [20,

21]. QCD Green’s functions in the large Nc and chiral limits have an analytic structure in

the complex momentum plane which consists of an infinity of isolated poles but no cut, i.e.

they become meromorphic functions [15]. As such, they have a well-defined series expansion

in powers of momentum around the origin with a finite radius of convergence given by the

first resonance mass.4 This is all that is needed to construct a Pade Approximant.5 A

theorem by Pommerenke [22] assures then convergence of any near diagonal PA to the true

function for any finite momentum, over the whole complex plane, except perhaps in a zero-

area set. The poles of the original Green’s function (i.e. the resonance masses) belong to

this zero-area set because not even the original function is defined there, but there are also

extra poles. These extra poles are called “defects” in the mathematical literature [20, 21].

When the Green’s function being approximated is of the Stieltjes type,6 the poles of the PA

are always real and located on the Minkowski region Re(q2) = Re(−Q2) > 0, approaching

the physical poles as the order of the PA is increased [23]. However, this takes place in a

3Adding one further state does not change the conclusion [19].
4The pion pole can always be eliminated multiplying by enough powers of momentum. We are assuming

here the existence of a nonvanishing gap in large-Nc QCD.
5Except for the appendix, in this paper we will construct our rational approximants using as input the

expansion around the origin.
6Roughly this means that the associated spectral function is positive definite, like in the case of the

two-point correlator 〈V V 〉. See ref. [20] (chapter 5) for a more precise definition.
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hierarchical way and, while the poles in the PA which are closest to the origin are also very

close to the physical masses, the agreement quickly deteriorates and one may find that the

last poles are several times bigger than their physical counterparts.7 The same is true of

the residues. In section 3, we will see with the help of a model that the same properties

are met in a meromorphic function whose spectral function is not positive definite, except

that some of the poles in the PA may even be complex.

This means that Minkowskian properties, such as masses and decay constants, cannot

be reliably determined from a PA except, perhaps, from the first poles which are closest to

the origin. If not all the residues and/or masses are physical, then there is no reason why

they should be the same in the form factor governing π → γeν and in the Green’s function

〈V V − AA〉, explaining the different results found in [11] and [19] we alluded to above.

Furthermore, the form factors of all but the lightest mesons, defined through the residues

of the corresponding 3-point Green’s functions, will not be reliably determined from a PA

to that Green’s function, again in agreement with the findings in [18].

The situation in the Euclidean is different. In general, PAs cannot be expanded at

infinite momentum to generate an OPE type expansion for the true function. Nevertheless,

Pommerenke’s theorem assures a good approximation at any finite momentum, no matter

how large. Of course, the order of the PA will have to increase, the larger the momentum

region one wishes to approximate. For instance, in ref. [23] it was shown with the help of a

simple model how, even in the case of the 〈V V 〉 correlator which contains a log Q2 at large

values of Q2 > 0, the PAs are capable of approximating the true function at any arbitrarily

large (but finite) value of Q2 > 0, without the need for a perturbative continuum. In

section 3 we will show, again with the help of a model, how this is also true in the more

general case of a non-positive definite spectral function such as 〈V V − AA〉. This means

that PAs are a reliable way to approximate the original Green’s function in the Euclidean

but not in the Minkowskian regime.

In 1977, A.A. Migdal [24] suggested PAs as a method to extract the spectrum of large-

Nc QCD from the leading term in the OPE of the 〈V V 〉 correlator, i.e. from the parton

model logarithm. However, nowadays this proposal should be considered unsatisfactory

for a number of reasons [25], the most simple of them being that different spectra may

lead to the same parton model logarithm [26]. In fact, the full OPE series is expected to

be only an asymptotic expansion at Q2 = ∞ (i.e. with zero radius of convergence), and

PAs constructed from this type of expansions cannot in general reproduce the position of

the physical poles.8 For instance, we show this explicitly with the help of a model for

〈V V − AA〉 in the appendix. Migdal’s approach has been recently adopted (in disguise)

in some models exploiting the so-called AdS/QCD correspondence [27] and, consequently,

the same criticism also applies to them.

In ref. [28] a model for the 〈V V −AA〉 two-point correlator with a spectrum consisting

of an infinity of resonances was suggested as a theoretical laboratory for studying the

relationship between the spectrum and the coefficients of the OPE. In this paper several

7See the table in ref. [23]
8Ref. [20], section 5.5.
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conventional methods usually employed in the literature were tested against the exact result

from the model. These included: Finite Energy Sum Rules as in ref. [32], pinched weights

as in ref. [33], Laplace transforms as in ref. [34] and, finally, also resonance saturation as in

the MHA method. The bottom line was that no method was able to produce very accurate

predictions for the OPE coefficients. In all the methods but the last one, the reason for

this lack of accuracy was basically due to the fact that the OPE requires an integral over

the whole spectrum, whereas the integral is actually cut off at an upper limit (in the real

case, the upper limit is mτ ). This is why even if one uses the real spectrum the result

may be inaccurate [29]. In the case of the MHA the reason was, as we will comment upon

below, that the poles were not allowed to be complex.

In section 3 we will revisit this 〈V V − AA〉 model, now from the point of view of

PAs. The model reproduces the power behavior of QCD at large Q2 > 0 except that the

model is simple enough not to have any log Q2 and, therefore, it cannot reproduce the

nonvanishing anomalous dimensions which exist in QCD. We do not think this is a major

drawback, however, because in QCD these logarithms are always screened by at least one

power of αs and, hence, in an approximate sense, it may be licit to ignore them. In the

model such an approximation becomes exact.9 Will the PAs be able to reproduce the

large Q2 expansion of the 〈V V − AA〉 model? We will see that the answer is affirmative.

Therefore, the reason why the MHA method was not able to predict accurately the OPE

coefficients in ref. [28] is because the lowest PA has complex poles which were not allowed

in [28]. When these complex poles are considered, the accuracy achieved is better and,

most importantly, improves for a higher PA. Since the model allows the construction of

PAs of a very high order, we have checked this convergence up to the Pade P 50
52 , which

is able to reproduce the first non vanishing coefficient of the OPE in the model with an

accuracy of 52 decimal figures. Together with other numerical examples which will be

discussed in section 3, we take this as a clear evidence of the convergence of the method.

This renders some confidence that PAs may also do a good job in the real case of QCD.

The rest of the paper is organized as follows. In section 2 we review some generalities

of rational approximants, in section 3 we describe the 〈V V −AA〉 model and apply different

rational approximants to learn about the possible advantages and disadvantages of them.

In section 4 we apply the simplest PA to the case of the real 〈V V −AA〉 two-point function

in QCD. Finally, we close with some conclusions.

2. Rational approximations: generalities

Let a function f(z) have an expansion around the origin of the complex plane of the form

f(z) =

∞∑

n=0

fnzn , z → 0 . (2.1)

One defines a Pade Approximant (PA) to f(z) , denoted by PM
N (z), as a ratio of two

polynomials QM (z), RN (z),10 of order M and N (respectively) in the variable z, with a

9For a model with a log Q2, the reader may consult ref. [23].
10Without loss of generality we define, as it is usually done, RN (0) = 1.
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contact of order M + N with the expansion of f(z) around z = 0. This means that, when

expanding PM
N (z) around z = 0, one reproduces exactly the first M + N coefficients of the

expansion for f(z) in eq. (2.1):

PM
N (z) =

QM(z)

RN (z)
≈ f0 + f1 z + f2 z2 + · · · + fM+N zM+N + O(zN+M+1) . (2.2)

At finite z, the rational function PM
N (z) constitutes a resummation of the series (2.1). Of

special interest for us will be the case when N = M + k, for a fixed k, because then the

function behaves like 1/zk at z = ∞. The corresponding PAs PM
M+k(z) belong to what

is called the near-diagonal sequence for k 6= 0, with the case k = 0 being the diagonal

sequence.

The convergence properties of the PAs to a given function are much more difficult than

those of normal power series and this is an active field of research in Applied Mathematics.

In particular, those which concern meromorphic functions11 are rather well-known and will

be of particular interest for this work. The main result which we will use is Pommerenke’s

Theorem [22] which asserts that the sequence of (near) diagonal PA’s to a meromorphic

function is convergent everywhere in any compact set of the complex plane except, perhaps,

in a set of zero area.12 This set obviously includes the set of poles where the original function

f(z) is clearly ill-defined but there may be some other extraneous poles as well. For a given

compact region in the complex plane, the previous theorem of convergence requires that,

either these extraneous poles move very far away from the region as the order of the Pade

increases, or they pair up with a close-by zero becoming what is called a defect in the

mathematical jargon.13 These are to be considered artifacts of the approximation. Near

the location of these extraneous poles the PA approximation clearly breaks down but, away

from these poles, the approximation is safe.

In the physical case the original function f(z) will be a Green’s function G(Q2) of the

momentum variable Q2. In QCD in the large Nc limit this Green’s function is meromorphic

with all its poles located on the negative real axis in the complex Q2 plane. These poles

are identified with the meson masses. On the other hand, the region to be approximated

by the PAs will be that of euclidean values for the momentum, i.e. Q2 > 0. The expansion

of G(Q2) for Q2 large and positive coincides with the Operator Product Expansion.

In general a meromorphic function does not obey any positivity constraints and, as

we will see, this has as a consequence that some of the poles and residues of the PAs may

become complex.14 This clearly precludes any possibility that these poles and residues may

have anything to do with the physical meson masses and decay constants. However, and this

is very important to realize, this does not spoil the validity of the rational approximation

provided the poles, complex or not, are not in the region of Q2 one is interested in. It is

to be considered rather as the price to pay for using a rational function, which has only a

11A function is said to be meromorphic when its singularities are only isolated poles.
12To be more precise, in a set of zero Hausdorff measure. See ref. [20], section 6.6.
13See [21], chapter 14, corollary 14.3.
14A special case which does obey positivity constraints is when the function is Stieltjes. In this case the

poles and residues of the PAs are purely real and with the same sign as those of the original function [23].
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finite number of poles, as an approximation to a meromorphic function with an infinite set

of poles.

When the position of the poles in the original Green’s function is known, at least

for the lowest lying states, it is interesting to devise a rational approximation which has

this information already built in. The corresponding approximants are called Partial Pade

Approximants (PPAs) in the mathematical literature [30] and are given by a rational

function P
M
N,K(Q2):

P
M
N,K(Q2) =

QM(Q2)

RN (Q2) TK(Q2)
, (2.3)

where QM (Q2), RN (Q2) and TK(Q2) are polynomials of order M,N and K (respectively)

in the variable Q2. The polynomial TK(Q2) is defined by having K zeros precisely at the

location of the lowest lying poles of the original Green’s function15 i.e.

TK(Q2) = (Q2 + M2
1 ) (Q2 + M2

2 ) . . . (Q2 + M2
K) . (2.4)

As before the polynomial RN (Q2) is chosen so that RN (0) = 1 and, together with QM (Q2),

they are defined so that the ratio P
M
N,K(Q2) matches exactly the first M + N terms in the

expansion of the original function around Q2 = 0, i.e. :

P
M
N,K(Q2) ≈ f0 + f1 Q2 + f2 Q4 + · · · + fM+N Q2M+2N + O(Q2N+2M+2) . (2.5)

At infinity, the PPA in eq. (2.3) obviously falls off like 1/Q2N+2K−2M . Exactly as it happens

in the case of PAs, also the PPAs will have complex poles for a general meromorphic

function, which prevents it from any interpretation in terms of meson states.

Finally, another rational approximant defined in mathematics is the so-called Pade

Type Approximant (PTA) [30] T
M
N (Q2):

T
M
N (Q2) =

QM (Q2)

TN (Q2)
, (2.6)

where TN (Q2) is also given by the polynomial (2.4), now with N preassigned zeros at the

corresponding position of the poles of the original Green’s function, G(Q2). The polynomial

QM (Q2) is defined so that the expansion of the PTA around Q2 = 0 agrees with that of

the original function up to and including terms of order M + 1, i.e.

T
M
N (Q2) ≈ f0 + f1 Q2 + f2 Q4 + · · · + fM Q2M + O(Q2M+2) . (2.7)

At large values of Q2, one has that T
M
N (Q2) falls off like 1/Q2N−2M . Clearly the PTAs are

a particular case of the PPAs, i.e. T
M
N (Q2) = P

M
0,N (Q2) and coincide with what has been

called the Hadronic Approximation to large-Nc QCD in the literature [13, 14].

Let us summarize the mathematical jargon. A Pade Type Approximant (PTA) is a

rational function with all the poles chosen in advance precisely at the physical masses. A

Pade Approximant (PA) is when all the poles are left free. The intermediate situation,

with some poles fixed at the physical masses and some left free, corresponds to what is

called a Partial Pade Approximant (PPA).

15For simplicity, we will assume that all the poles are simple.
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3. Testing rational approximations

3.1 The model

Let us consider the two-point functions of vector and axial-vector currents in the chiral

limit

ΠV,A
µν (q) = i

∫
d4x eiqx〈JV,A

µ (x)J† V,A
ν (0)〉 =

(
qµqν − gµνq2

)
ΠV,A(q2) , (3.1)

with Jµ
V (x) = d(x)γµu(x) and Jµ

A(x) = d(x)γµγ5u(x). As it is known, the difference

ΠV (q2) − ΠA(q2) satisfies an unsubtracted dispersion relation16

ΠV −A(q2) =

∫ ∞

0

dt

t − q2 − iǫ

1

π
Im ΠV −A(t) . (3.2)

Following refs. [31, 28], we define our model by giving the spectrum as

1

π
ImΠV (t) = 2F 2

ρ δ(t − M2
ρ ) + 2

∞∑

n=0

F 2
V (n)δ(t − M2

V (n)) ,

1

π
ImΠA(t) = 2F 2

0 δ(t) + 2
∞∑

n=0

F 2
A(n)δ(t − M2

A(n)) . (3.3)

Here Fρ,Mρ are the electromagnetic decay constant and mass of the ρ meson and FV,A(n)

are the electromagnetic decay constants of the n− th resonance in the vector (resp. axial)

channels, while MV,A(n) are the corresponding masses. F0 is the pion decay constant in

the chiral limit. The dependence on the resonance excitation number n is the following:

F 2
V,A(n) = F 2 = constant , M2

V,A(n) = m2
V,A + n Λ2 , (3.4)

in accord with known properties of the large-Nc limit of QCD [5] as well as alleged properties

of the associated Regge theory [36].

The combination

ΠLR(q2) =
1

2
(ΠV (q2) − ΠA(q2)) (3.5)

thus reads

ΠLR(q2) =
F 2

0

q2
+

F 2
ρ

−q2 + M2
ρ

+

∞∑

n=0

{
F 2

−q2 + M2
V (n)

− F 2

−q2 + M2
A(n)

}
. (3.6)

This two-point function can be expressed in terms of the Digamma function ψ(z) =
d
dz

log Γ(z) as [28]

ΠLR(q2) =
F 2

0

q2
+

F 2
ρ

−q2 + M2
ρ

+
F 2

Λ2

{
ψ

(−q2 + m2
A

Λ2

)
− ψ

(−q2 + m2
V

Λ2

)}
. (3.7)

To resemble the case of QCD, we will demand that the usual parton-model logarithm is

reproduced in both vector and axial-vector channels and that the difference (3.2) has an

16The upper cutoff which is needed to render the dispersive integrals mathematically well defined can be

sent to infinity provided it respects chiral symmetry [17].
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operator product expansion which starts at dimension six. A set of parameters satisfying

these conditions is given by17

F0 = 85.8 MeV , Fρ = 133.884 MeV , F = 143.758 MeV , (3.8)

Mρ = 0.767 GeV, mA = 1.182 GeV, mV = 1.49371 GeV , Λ =1.2774 GeV ,

and is the one we will use in this section. This set of parameters has been chosen to

resemble those of the real world, while keeping the model at a manageable level. For

instance, the values of Fρ and Mρ in (3.8) are chosen so that the function ΠLR in (3.7) has

vanishing 1/Q2 and 1/Q4 in the OPE at large Q2 > 0, as in real QCD. In fact, the model

admits the introduction of finite widths (which is a 1/Nc effect) in the manner described

in ref. [31], after which the spectral function looks reasonably similar to the experimental

spectral function. This comparison can be found in figure 5 of ref. [28]. But this model

is also interesting for a very different reason. In ref. [28] several attempts were made at

determining the coefficients of the OPE by using the methods which have become common

practice in the literature. Among those we may list Finite Energy Sum Rules [32], with

pinched weights [33], Laplace sum rules [34] and Minimal Hadronic Approximation [13, 14].

As it turned out, when these methods were tested on the model, none of them was able to

produce very accurate results. We think that this makes the model very interesting (and

challenging !) as a way to assess systematic errors [35].

Defining the expansion of the Green’s function (3.2) in Q2 = −q2 around Q2 = ∞ as

Q2 ΠLR(−Q2) ≈
∑

k

C2k Q2k , with k = −2,−3, . . . (3.9)

one obtains that the coefficients accompanying inverse powers of momentum, akin to the

Operator Product Expansion at large Q2 > 0, are given by (p = 1, 2, 3, . . . with k = 1− p):

C2k = −F 2
0 δp,1 + (−1)p+1

[
F 2

ρ M2p−2
ρ − 1

p
F 2Λ2p−2

{
Bp

(
m2

V

Λ2

)
− Bp

(
m2

A

Λ2

)}]
, (3.10)

where Bp(x) are the Bernoulli polynomials [10]. As stated above, Fρ and Mρ are defined

by the condition that the above expression (3.10) vanishes for k = 0,−1 (in agreement

with (3.9) above), enforcing that Q2 ΠLR(−Q2) ∼ Q−4 at large momentum as in QCD. We

emphasize that the above coefficients of the OPE in eq. (3.10) can not be calculated by a

naive expansion at large Q2 of the Green’s function in eq. (3.6). In other words, physical

masses and decay constants do not satisfy the naive Weinberg sum rules [17].

On the other hand, the expansion of the Green’s function (3.2) in Q2 = −q2 around

Q2 = 0 can be written as

Q2 ΠLR(−Q2) ≈
∑

k

C2k Q2k , with k = 0, 1, 2, 3 . . . (3.11)

17These numbers have been rounded off for the purpose of presentation. Some of the exercises which will

follow require much more precision than the one shown here.

– 9 –



J
H
E
P
0
5
(
2
0
0
7
)
0
4
0

C0 C2 C4 C6 C−4 C−6 C−8

−7.362 21.01 −43.92 81.81 −2.592 1.674 −0.577

Table 1: Values of the coefficients C2k from the high- and low-Q2 expansions of Q2 ΠLR(−Q2) in

eqs. (3.9), (3.11) in units of 10−3 GeV 2−2k. Notice that C−2 = 0 and C0 = −F 2
0 (the pion decay

constant in the chiral limit), see text.

For these coefficients accompanying nonnegative powers of momentum, akin to the chiral

expansion at small Q2, one has (ℓ = 1, 2, 3, . . .):

C0 = −F 2
0 , C2ℓ = (−1)ℓ+1 F 2

ρ

M2ℓ
ρ

− 1

(ℓ − 1)!

F 2

Λ2ℓ

{
ψ(ℓ−1)

(
m2

V

Λ2

)
− ψ(ℓ−1)

(
m2

A

Λ2

)}
,

(3.12)

where ψ(ℓ−1)(z) = dℓ−1ψ(z)/dzℓ−1. In table 1 we collect the values for the first few of these

coefficients C2k for both expansions (3.9) and (3.11).

Following the definitions in section 2, let us start with the construction of the rational

approximants to the function Q2 ΠLR(−Q2) using as input the coefficients of its chiral

expansion, eq. (3.12). Since our original function (3.7) falls off at large Q2 as Q−4, this is

a constraint we will impose on all our rational approximants by selecting the appropriate

difference in the order of the polynomials in the numerator and denominator.

3.2 Pade Approximants (PAs)

The simplest PA satisfying the right falloff at large momentum is P 0
2 (Q2), so we will begin

with this case. In order to simplify the results, and unless explicitly stated otherwise, we

will assume that dimensionful quantities are expressed in units of GeV to the appropriate

power. Fixing the three unknowns with the first three coefficients from the chiral expansion

of (3.7) (i.e. C0,2,4) one gets the following rational function

P 0
2 (Q2) =

− r2
R

(Q2 + zR)(Q2 + z∗R)
, r2

R = 3.379 × 10−3 , zR = 0.6550 + i 0.1732 . (3.13)

We can hardly overemphasize the striking appearance of a pair of complex-conjugate poles

on the Minkowski side of the complex Q2 plane. Obviously, this means that these poles

cannot be interpreted in any way as the meson states appearing in the physical spec-

trum (3.3), (3.6). In spite of this, if one expands (3.13) for large values of Q2 > 0, one finds

C−4 = −r2
R = −3.379 × 10−3 which is not such a bad approximation for this coefficient

of the OPE, see table 1. Even better is the prediction of the fourth term in the chiral

expansion, which is C6 = 79.58 × 10−3.

This agreement is not a numerical coincidence and the approximation can be system-

atically improved if more terms of the chiral expansion are known. In order to exemplify

this, we have amused ourselves by constructing the high-order PA P 50
52 (Q2). This rational

approximant correctly determines the values for C−4,−6,−8 with (respectively) 52, 48 and

45 decimal figures. In the case of C103, which is the first predictable term from the chiral

expansion for this Pade, the accuracy reaches some staggering 192 decimal figures. This is

all in agreement with Pommerenke’s theorem [22].
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Figure 1: Location of the poles (dots) and zeros (squares) of the Pade Approximant P 50
52 (−q2) in

the complex q2 plane. We recall that Q2 = −q2. Notice how zeros and poles approximately coincide

in the region which is farthest away from the origin. When the order of the Pade is increased, the

overall shape of the figure does not change but the two branches of complex poles move towards

the right, i.e. away from the origin.

As it happens for the PA (3.13), also higher-order PAs may develop some artificial

poles. In particular, figure 1 shows the location of the 52 poles of the PA P 50
52 (Q2) in the

complex q2 plane. Of these, the first 25 are purely real and the rest are complex-conjugate

pairs. A detailed numerical analysis reveals that the poles and residues reproduce very

well the value of the meson masses and decay constants for the lowest part of the physical

spectrum of the model given in (3.6), (3.8), but the agreement deteriorates very quickly

as one gets farther away from the origin, eventually becoming the complex numbers seen

in figure 1. It is by creating these analytic defects that rational functions can effectively

mimic with a finite number of poles the infinite tower of poles present in the original

function (3.7).

For instance the values of the first pole and residue in P 50
52 (Q2) reproduce those of the

ρ in (3.8) within 193 astonishing decimal places for both. However, in the case of the 25th

pole, which is the last one still purely real, its location agrees with the physical mass only

with 3 decimal figures. This is not to be considered as a success, however, because after the

previous accuracy, this is quite a dramatic drop. In fact, the residue associated with this

25th pole comes out to be 29 times the true value. The lesson we would like to draw from

this exercise should be clear: the determination of decay constants and masses extracted as

the residues and poles of a PA deteriorate very quickly as one moves away from the origin.

There is no reason why the last poles and residues in the PA are to be anywhere near their

physical counterparts and their identification with the particle’s mass and decay constant

should be considered unreliable. Clearly, this particularly affects low-order PAs.

A very good accuracy can also be obtained in the determination of global euclidean

observables such as integrals of the Green’s function over the interval 0 ≤ Q2 < ∞. Notice

that the region where one approximates the true function is far away from the artificial
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poles in the PA. For instance, one may consider the value for the integral

Iπ = (−1)

∫ ∞

0
dQ2 Q2ΠLR(Q2) = 4.78719 × 10−3, (3.14)

which, up to a constant, would yield the electromagetic pion mass difference in the chiral

limit [37] in the model (3.7). The PA P 50
52 (Q2) reproduces the value for this integral with

more than 42 decimal figures. This suggests that one may use the integral (3.14) as a

further input to construct a PA.

For example if we fix the three unknowns in the PA P 0
2 (Q2) by matching the first two

terms from the chiral expansion but now we complete it with the pion mass difference (3.14)

instead of a third term from the chiral expansion as we did in (3.13),18 the approximant

results to be

P̃ 0
2 (Q2) =

− r2
R

(Q2 + zR)(Q2 + z∗R)
, with r2

R = 2.898 × 10−3 , zR = 0.5618 + i 0.2795 .

(3.15)

This determines C−4 = −2.898 × 10−3 and C4 = −41.26 × 10−3, which shows that using

the pion mass difference is not a bad idea. Notice how the position of the artificial pole

has changed with respect to (3.13).

Artificial poles and analytic defects are transient in nature, i.e. they appear and dis-

appear from a point in the complex plane when the order of the Pade is changed. On the

contrary, the typical sign that a pole in a Pade is associated with a truly physical pole is

its stability under these changes in the order of the Pade. Of course, when the order in the

Pade increases there have to be new poles by definition, and it is natural to expect that

some of them will be defects. Pade Approximants place some effective poles and residues

in the complex Q2 plane in order to mimic the behavior of the true Green’s function, but it

can mimic the function only away from the poles, e.g. in the Euclidean region. Obviously,

PAs cannot converge at the poles, in agreement with Pommerenke’s theorem [22], since not

even the true function is well defined there. The point is that what may look like a small

correction in the Euclidean region may turn out to be a large number in the Minknowski

region. To exemplify this in simple terms, let us consider a very small parameter ǫ and

imagine that a given Pade P (Q2) produces the rational approximant to the true Green’s

function G(Q2) given by

G(Q2) ≈ P (Q2) ≡ R(Q2) +
ǫ

Q2 + M2
, (3.16)

where R(Q2) is the part of the Pade which is independent of ǫ. Although for Q2 > 0 there

is a sense in which the last term is a small correction precisely because of the smallness of ǫ,

for Q2 < 0 this is no longer true because of the pole at Q2 = −M2. This pole is in general a

defect and may not represent any physical mass. In fact, associated with this pole, there is

a very close-by zero of the Pade P (Q2) at Q2 = −M2−ǫ R(−M2)
−1

, as can be immediately

checked in (3.16). This is another way of saying that a defect is characterized by having an

18We remark that this procedure, although reasonable from the phenomenological point of view, strictly

speaking lies outside the standard mathematical theory of rational approximants [20, 21, 30].
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abnormally small residue and is the origin of the pairs of zeros and poles in the y-shaped

branches of figure 1. Therefore, not only are defects unavoidable but one could say they

are even necessary for a Pade Approximant to approximate a meromorphic function with

an infinite set of poles.

Similarly to masses, also decay constants may be unreliable. To see this, imagine now

that our Pade is given by

P (Q2) =
F

Q2 + M2
+

ǫ

(Q2 + M2) (Q2 + M2 + ǫ2)
, (3.17)

again for a very small ǫ. As before, the term proportional to ǫ may be considered a small

correction for Q2 > 0. However, at the pole Q2 = −M2 the decay constant becomes F +ǫ−1

which, for ǫ small, may represent a huge correction. When the poles are preassigned at the

physical masses, like in the case of PTAs, it is the value of the residues that compensates

for the fact that the rational approximant lacks the infinite tower of resonances. As we

saw before, the residues of the poles in the Pade which lie farthest away from the origin

are the ones which get the largest distortion relative to their physical counterparts.

In real life, the number of available terms from the chiral expansion for the construction

of a PA is very limited. Since the masses and decay constants of the first few vector

and axial-vector resonances are known, one may envisage the construction of a rational

approximant having some of its poles at the prescribed values given by the known masses

of these resonances. If all the poles in the approximant are prescribed this way (as in the

MHA), we have a PTA. On the contrary, when some of the poles are prescribed but some

are also left free, then we have a PPA (see the previous section).

3.3 Pade Type Approximants (PTAs)

Assuming that the first masses are known, let us proceed to constructing the PTAs (2.6).

The lowest such PTA is T
0
2(Q

2), which contains two poles at the physical masses of the

ρ and the first A in the tower. Fixing the residue through the chiral expansion to be

C0 = −F 2
0 , one obtains

T
0
2(Q

2) =
− F 2

0 M2
ρM2

A

(Q2 + M2
ρ )(Q2 + M2

A)
. (3.18)

Even though it has the same number of inputs (C0 and the two masses), this rational

approximant does not do such a good job as the PAs (3.13) or (3.15). For instance, C−4

is 2.3 times larger than the true value in table 1. As we have already stated, one way to

intuitively understand this result is the following. The OPE is an expansion at Q2 = ∞
and therefore knows about the whole spectrum because no resonance is heavy enough with

respect to Q2 to become negligible in the expansion, i.e., the infinite tower of resonances

does not decouple in the OPE. Chopping an infinite set of poles down to a finite set

may be a good approximation, but only at the expense of some changes. These changes

amount to the appearance of poles and residues in the PA which the original function

does not have. This is how the PA (3.13) manages to approximate the true function (3.7).

However, by construction, the PTA (3.18) does not allow the presence of any artificial pole
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because, unlike in a PA, all its poles are fixed at the physical values. Consequently, it only

has its residues as a means to compensate for the infinite tower of poles present in the

true function and, hence, does a poorer job than the PA (3.13), particularly in determining

large-Q2 observables like C−4. Indeed, the role played by the residues in the approximation

can be appreciated by comparing the true values of the decay constants to those extracted

from (3.18). Although the one of the ρ is within 30% of the true value, that of the A is off

by 100%.

A different matter is the prediction of low-energy observables such as, e.g., the chiral

coefficients. In this case heavy resonances make a small contribution and this means that

the infinite tower of resonances does decouple.19 Truncating the infinite tower down to a

finite set of poles is not such a severe simplification in this case, which helps understand

why a PTA may do a good job predicting unknown chiral coefficients. Indeed, (3.18)

reproduces the value of C2 within an accuracy of 15%, growing to 22% in the case of C4. A

global observable like Iπ averages the low and the high Q2 behaviors and ends up differing

from the true value (3.14) by 35%. This gives some confidence that observables which are

integrals over Euclidean momentum may be reasonably estimated with MHA as, e.g., in

the BK calculation of ref. [38].

Improving on the PTA (3.18) by adding in the first resonance mass from the vector

tower produces the following approximant

T
1
3(Q

2) =
a + b Q2

(Q2 + M2
ρ )(Q2 + M2

A)(Q2 + M2
V )

, with

{
a = −13.5 × 10−3,

b = +1.33 × 10−4 ,
(3.19)

where the values of the chiral coefficients C0 and C2 have been used to determine the

parameters a and b. The prediction for C4 is much better now (only 2% off), in agreement

with our previous comments. The prediction for C−4 is still very bad, becoming now 19

times smaller than the exact value. Nevertheless, it eventually gets much better if PTAs

of very high order are constructed. For instance, we have found C−4 = −2.58 × 10−3 for

the approximant T
7
9 with 9 poles. Similarly, we have also checked that the prediction of

the chiral coefficients and the integral (3.14) improve with higher-order PTAs.

However, another matter is the prediction of the residues. For instance, the prediction

for the decay constant of the state with mass MV in (3.19) is smaller than the exact value

in the model (3.8) by a factor of 2. In general, we have seen that the residues of the poles

always deteriorate very quickly so that the residue corresponding to the pole which is at

the greatest distance from the origin is nowhere near the exact value. We again explicitly

checked this up to the approximant T
7
9, in which case the decay constant for this pole is

almost 5 times smaller than the exact value. The conclusion, therefore, is that PTAs are

able to approximate the exact function only at the expense of changing the residues of the

poles from their physical values. Identifying residues with physical decay constants may

be completely wrong in a PTA for the poles which are farthest away from the origin.

19This is because the residues F 2 in the Green’s function (3.7) stay constant as the masses grow. This

behavior does not hold in the case of the scalar and pseudoscalar two-point functions [10].
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3.4 Partial Pade Approximants (PPAs)

As an intermediate approach between PAs and PTAs, there are the PPAs (2.3) where

some poles are fixed at their physical values while some others are left free. The simplest

of such rational approximants is P
0
1,1(Q

2) (see the previous section for notation). Fixing

its 3 unknowns with M2
ρ , C0 and C2, one obtains

P
0
1,1(Q

2) =
− r2

R

(Q2 + M2
ρ )(Q2 + zR)

, with r2
R = 3.75 × 10−3 , zR = 0.8665 . (3.20)

As can be seen, the mass (squared) of the first A resonance is predicted to be at zR which is

sensibly smaller than the true value in (3.8).20 The rational function (3.20) predicts C−4 =

−r2
R = −3.75× 10−3 which is a better determination than that of the PTA (3.18) with the

same number of inputs, and C4 = −45.52 × 10−3 which is not bad either. Concerning the

pion mass difference, one gets Iπ = 5.22 × 10−3. However, as compared to the PAs (3.13)

or (3.15), the PPA (3.20) does not represent a clear improvement.

In order to improve on accuracy of the PPA, one may try to use the mass and decay

constant of the first resonance, Mρ and Fρ, in addition to the pion mass difference and the

chiral coefficients C0, C2 and build the P
1
2,1(Q

2), which can be written as:

P
1
2,1(Q

2) =
F 2

ρ M2
ρ

Q2 + M2
ρ

+
a − F 2

ρ M2
ρ Q2

(Q2 + zc) (Q2 + z∗c )
,

{
a = 17.43 × 10−3,

zc = 1.24 + i 0.34 .
(3.21)

This PPA, upon expansion at large and small Q2, determines C−4 = −2.47×10−3 and C4 =

−44.0 × 10−3 to be compared with the corresponding coefficient in table 1. The accuracy

obtained is better than that of (3.15), but this is probably to be expected since (3.21) has

more inputs.

Based on the previous numerical experiments done on the model in eq. (3.7), (3.8) (and

many others), we now summarize the following conclusions. Although, in principle, the

PAs have the advantage of reaching the best precision by carefully adjusting the polynomial

in the denominator to have some effective poles which simulate the infinite tower present

in (3.7), they have the disadvantage that some of the terms in the low-Q2 expansion are

required precisely to construct this denominator. This hampers the construction of high-

order PAs and consequently limits the possible accuracy.

When the locations of the first poles in the true function are known, there is the

possibility to construct PTAs (with all the poles fixed at the true values) and PPA (with

some of the poles fixed and some left free). As we have seen, although the PTA may

approximate low-Q2 properties of the true function reasonably well, the large-Q2 properties

tend to be much worse, at least as long as they are not of unrealistically high order. The

PPAs, on the other hand, interpolate smoothly between the PAs (only free poles) and

the PTAs (no free pole). Depending on the case, one may choose one or several of these

rational approximants. However, common to all the rational approximants constructed

is the fact that the residues and/or poles which are farthest away from the origin are in

general unrelated to their physical counterparts.

20Intriguinly enough, this is also what happens in the real case of QCD [9, 19].
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4. The QCD case

Let us now discuss the real case of large-Nc QCD in the chiral limit. In contrast to the

case of the previous model, any analysis in this case is limited by two obvious facts. First,

any input value will have an error (from experiment and because of the chiral and large-Nc

limits), and this error will propagate through the rational approximant. And second, it is

not possible to go to high orders in the construction of rational approximants due to the

rather sparse set of input data. In spite of these difficulties one may feel encouraged by the

phenomenological fact that resonance saturation approximates meson physics rather well.

The simplest PA to the function Q2ΠLR(−Q2) with the right fall-off as Q−4 at large

Q2 is P 0
2 (Q2):

P 0
2 (Q2) =

a

1 + A Q2 + B Q4
. (4.1)

The values of the three unknowns a,A and B may be fixed by requiring that this PA

reproduces the correct values for F0, L10 and Iπ
21 given by

F0 = 0.086 ± 0.001 GeV ,

δmπ = 4.5936 ± 0.0005 MeV =⇒ Iπ = (5.480 ± 0.006) × 10−3GeV4 ,

L10(0.5 GeV) ≤ L10 ≤ L10(1.1 GeV) =⇒ L10 = (−5.13 ± 0.6) × 10−3 . (4.2)

The low-energy constant L10 is related to the chiral coefficient C2, in the notation of

eq. (3.11), by C2 = −4L10. Since L10 does not run in the large-Nc limit, it is not clear at

what scale to evaluate L10(µ) [39]. In eq. (4.2) we have varied µ in the range 0.5 GeV ≤
µ ≤ 1.1 GeV as a way to estimate 1/Nc systematic effects. The central value corresponds

to the result for L10(Mρ) found in ref. [41]. The other results in (4.2) are extracted from

refs. [1, 40].

Obviously, the PA (4.1) can also be rewritten as

P 0
2 (Q2) =

− r2

(Q2 + zV )(Q2 + zA)
, (4.3)

in terms of two poles zV,A. In order to discuss the nature of these poles, we will define the

dimensionless parameter ζ by the combination

ζ ≡ −4L10
Iπ

F 4
0

= 2.06 ± 0.25 , (4.4)

where the values in (4.2) above have been used in the last step. Imposing the con-

straints (4.2) on the PA (4.3) one finds two types of solutions depending on the value

of ζ: for ζ > 2 the two poles zV,A are real, whereas for ζ < 2 the two poles are complex.

At ζ = 2, the two solutions coincide. To see this, let us write the set of equations satisfied

21Recall that Iπ is, up to a constant, the electromagnetic pion mass difference δmπ [19] and is defined in

terms of ΠLR as in eq. (3.14).
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C0 C2 C4 C6 C8 C−4 C−6 C−8

−F 2
0 −4L10 −43 ± 13 81 ± 53 −145 ± 120 −4.1 ± 0.5 6 ± 2 −7 ± 6

Table 2: Values of the coefficients C2k in the high- and low-Q2 expansions of Q2 ΠLR(−Q2) in

eq. (3.9), (3.11) in units of 10−3 GeV 2−2k. Recall that C−2 = 0.

by the PA (4.3) as:

F 2
0 =

r2

zV zA

−4L10 = F 2
0

(
1

zV
+

1

zA

)

Iπ = F 2
0

zV zA

zA − zV
log

zA

zV
. (4.5)

The first of these equations can be used to determine the value of the residue r2 in terms

of zV zA. In order to analyze the other two, let us first assume that both poles zV,A are

real. In this case, they also have to be positive or else the integral Iπ will not exist because

it runs over all positive values of Q2. Let us now make the change of variables

zV = R (1 − x), zA = R (1 + x) . (4.6)

The condition zV,A > 0 translates into R > 0, |x| < 1. In terms of these new variables, the

second and third equations in (4.5) can be combined into

ζ =
1

x
log

1 + x

1 − x
, (4.7)

where the definition (4.4) for ζ has been used. With the help of the identity log(1 + x/1−
x) = 2 th−1x (for |x| < 1), one can finally rewrite this expression as

ζ =
2

x
th−1x, (x real) (4.8)

which is an equation with a solution for x only if ζ ≥ 2. Once this value of x is found,

the value of R can always be obtained from one of the last two equations (4.5) and this

determines the two real poles zV,A from (4.6).

On the other hand, when ζ < 2, eq. (4.8) does not have a solution. However, according

to (4.4), ζ can also be smaller than 2. In order to study this case, we may use the identity

th−1(i y) = i tan−1(y) to rewrite the above equation (4.8) in terms of the variable x = i y

(y real) as

ζ =
2

y
tan−1y, (y real). (4.9)

One now finds that this equation has a solution for y when ζ ≤ 2. In this case the poles of

the PA (4.1) are complex-conjugate to each other and can be obtained as zV,A = R(1±i y).

These poles, obviously, cannot be associated with any resonance mass and this is why this

solution has been discarded in all resonance saturation schemes up to now. However,

from the point of view of the rational approximant (4.1) there is nothing wrong with this
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complex solution, as the approximant is real and well behaved. From the lessons learned in

the previous section with the model, there is no reason to discard this solution since, as we

saw, rational approximants may use complex poles to produce accurate approximations.

Therefore, we propose to use both the complex as well as the real solution for the poles

zV,A, at least insofar as the value for ζ ≷ 2. In this case we obtain, using the values given

in eqs. (4.2),

(ζ ≥ 2) , r2 = −(4.1 ± 0.5) × 10−3 , zV = (0.77)2 ± 0.15 , zA = (0.96)2 ± 0.41 (4.10)

(ζ ≤ 2) , r2 = −(3.9 ± 0.1) × 10−3 , zV = z∗A = (0.66 ± 0.06) + i (0.25 ± 0.25) , (4.11)

in units of GeV6 for r2, and GeV2 for zV,A. The two solutions in eqs. (4.10), (4.11) have been

separated for illustrative purposes only. It is clear that they are continuously connected

through the boundary at ζ = 2, at which value the two poles coincide and zV = zA ≃ 0.72.

The errors quoted are the result of scanning the spread of values in (4.2) through the

equations (4.5).

With both set of values in (4.10), (4.11), one can get to a prediction for the chiral and

OPE coefficients by expansion in Q2 and 1/Q2, respectively. These expansions of the PA

can be done entirely in the Euclidean region Q2 > 0, away from the position of the poles

zV,A, whether real or complex. Recalling the notation in eq. (3.9), (3.11), the above P 0
2 (Q2)

produces the coefficients for these expansions collected in table 2. The values for the OPE

coefficients C−4,−6,−8 in this table are compatible with those of ref. [19], after multiplying

by a factor of two in order to agree with the normalization used by these authors. However,

the spectrum in our case is different because of the complex solution in (4.11). As we saw

in the previous section with a model, this again shows that Euclidean properties of a given

Green’s function, such as the OPE and chiral expansions, or integrals over Q2 > 0 are

safer to approximate with a rational approximant than Minkowskian quantities, such as

resonance masses and decay constants.

5. Conclusions

In this article we pointed out that approximating large-Nc QCD with a finite number of

resonances may be reinterpreted within the mathematical Theory of Pade Approximants

to meromorphic functions [20, 21].

The main results of this theory may be summarized as follows. One may expect

convergence of a sequence of Pade Approximants to a QCD Green’s function in the large-

Nc limit in any compact region of the complex Q2 plane except at most in a zero-area

set [22]. This set without convergence comprises the poles of the original Green’s function

together with some other artificial poles generated by the approximant which the original

function does not have. As the order of the PA grows, the previous convergence property

implies that any given artificial pole either goes to infinity, away from the relevant region,

or is almost compensated by a nearby zero. This symbiosis between a pole and a zero is

called a defect. Although close to a pole the rational approximation breaks down, in a

region which is far away from it the approximation should work well.
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We have reviewed the main results of this theory with the help of a model for the two-

point Green’s function 〈V V −AA〉. The simpler case of a Green’s function of the Stieltjes

type, such as the two-point correlator 〈V V 〉, was previously considered in ref. [23]. We have

seen in the case of this particular model how rational approximants create the expected

artificial poles (and the corresponding residues) in the Minkowski region Re(q2) > 0 while,

at the same time, yielding an accurate description of the Green’s function in the Euclidean

region Re(q2) < 0. This happens in a hierarchical way: although the first poles/residues

in a PA may be used to describe the physical masses/decay constants reasonably well,

the last ones give only a very poor description. Therefore, it is in general unreliable to

extract properties of individual mesons, such as masses and decay constants, from an

approximation to large-Nc QCD with only a finite number of states. Since a form factor,

like a decay constant, is obtained as the residue of a Green’s function at the corresponding

pole(s), this also means that one may not extract a meson form factor from a rational

approximant to a 3-point Green’s function, in agreement with [18]. This observation may

explain why the analysis of ref. [42], which is based on an extraction of matrix elements

such as 〈π|S|P 〉 and 〈π|P |S〉 from the 3-point function 〈SPP 〉, finds values for the Kℓ3

form factor which are different from those obtained in other analyses [43].

In spite of all the above problems related to the Minkowski region, our model shows

how Pade Approximants may nevertheless be a useful tool in other regions of momentum

space. We think that this is also true in the real case of QCD in the large-Nc limit. In this

case one may use the first few terms of the chiral and operator product expansions of a

given Green’s function to construct a Pade Approximant which should yield a reasonable

description of this function in those regions of momentum space which are free of poles.

In this construction, Pade Approximants containing complex poles, if they appear, should

not be dismissed.

We have also reanalyzed the simplest approximation to the 〈V V −AA〉 Green’s function

in real QCD which consists of keeping only two poles, and we have found that, depending

on the value of the combination ζ in eq. (4.4), these two poles may actually be complex.

However, if not all the residues and masses in a rational approximant are physical, this

poses a challenge to any attempt to use a Lagrangian with a finite number of resonances

such as, for example, the ones in ref. [9, 11], for describing Green’s functions in the large-Nc

limit of QCD. Even if these Lagrangians are interpreted in terms of PTAs, with the poles

fixed at the physical value of the meson masses, we have seen how the residues then get

very large corrections with respect to their physical counterparts. Can these residues be

efficiently incorporated in a Lagrangian framework? We hope to be able to devote some

work to answering this and related questions in the future.
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A. OPE-based Pade Approximant

Here, unlike in the rest of the paper, we will deal with the construction of PAs from the

1/Q2 expansion at infinity. We will show how the PAs constructed from this expansion

(akin to the OPE) do not in general reproduce even the first resonances in the spectrum,

unlike those constructed from the chiral expansion. Again, we will use the model of sec-

tion 3 as an example. Recalling the definition of the OPE given in eq. (3.9), with the

corresponding coefficients (3.10), it is straightforward to construct a PA in 1/Q2 around

infinity, i.e. by matching powers of the OPE in 1/Q2. The construction parallels that in

eq. (2.2) but with the replacement z = 1/Q2. Since the function Q2ΠLR(−Q2) behaves

like a constant for Q2 → 0, we will consider diagonal Pade Approximants, i.e. of the form

Pn
n (1/Q2), in order to reproduce this behavior. Figure 2 shows the position of the poles

and zeros of the PA P 50
50 (−1/q2) in the complex q2 plane. As it is clear from this plot, the

positions of the poles have nothing to do with the physical masses in the model, given by

eqs. (3.4), (3.8), even for the lightest states. This is to be contrasted with what happens

with the PA constructed from the chiral expansion around Q2, which is shown in figure 1.

The difference between the two behaviors is due to the fact that, while the chiral expansion

has a finite radius of convergence, the radius of convergence of the OPE vanishes because

this expansion is asymptotic. In spite of this, one can see that the PA P 50
50 (1/Q2) is an

excellent approximation to the function Q2ΠLR(−Q2) in the euclidean region.

– 20 –



J
H
E
P
0
5
(
2
0
0
7
)
0
4
0

References

[1] J. Gasser and H. Leutwyler, Chiral perturbation theory: expansions in the mass of the strange

quark, Nucl. Phys. B 250 (1985) 465.

[2] H.W. Fearing and S. Scherer, Extension of the chiral perturbation theory meson lagrangian to

order p(6), Phys. Rev. D 53 (1996) 315 [hep-ph/9408346];

J. Bijnens, G. Colangelo and G. Ecker, The mesonic chiral lagrangian of order p6, JHEP 02

(1999) 020 [hep-ph/9902437];

J. Bijnens, L. Girlanda and P. Talavera, The anomalous chiral lagrangian of order p6, Eur.

Phys. J. C 23 (2002) 539 [hep-ph/0110400].

[3] J. Kambor, J. Missimer and D. Wyler, The chiral loop expansion of the nonleptonic weak

interactions of mesons, Nucl. Phys. B 346 (1990) 17;

G. Esposito-Farese, Right invariant metrics on SU(3) and one loop divergences in chiral

perturbation theory, Z. Physik C 50 (1991) 255.

[4] C. Bernard et al., Low energy constants from the MILC collaboration, hep-lat/0611024 and

references therein.

[5] G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72 (1974) 461;

E. Witten, Baryons in the 1/N expansion, Nucl. Phys. B 160 (1979) 57.

[6] S.R. Coleman and E. Witten, Chiral symmetry breakdown in large-N chromodynamics, Phys.

Rev. Lett. 45 (1980) 100.

[7] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200].

[8] J.J. Sakurai, Currents and mesons, Chicago Lectures in Physics, The Univ. of Chicago Press

(1969);

see also A. Bramon, E. Etim and M. Greco, A vector meson dominance approach to scale

invariance, Phys. Lett. B 41 (1972) 609.

[9] J.F. Donoghue, C. Ramirez and G. Valencia, The spectrum of QCD and chiral lagrangians of

the strong and weak interactions, Phys. Rev. D 39 (1989) 1947;

G. Ecker, J. Gasser, A. Pich and E. de Rafael, The role of resonances in chiral perturbation

theory, Nucl. Phys. B 321 (1989) 311.

[10] M. Golterman and S. Peris, On the relation between low-energy constants and resonance

saturation, Phys. Rev. D 74 (2006) 096002 [hep-ph/0607152].

[11] G. Ecker, J. Gasser, H. Leutwyler, A. Pich and E. de Rafael, Chiral lagrangians for massive

spin 1 fields, Phys. Lett. B 223 (1989) 425;

for an update, see ref. [14]. See also J. Bijnens and E. Pallante, On the tensor formulation of

effective vector lagrangians and duality transformations, Mod. Phys. Lett. A 11 (1996) 1069

[hep-ph/9510338].

[12] B. Moussallam, A sum rule approach to the violation of Dashen’s theorem, Nucl. Phys. B

504 (1997) 381 [hep-ph/9701400].

[13] M. Knecht and E. de Rafael, Patterns of spontaneous chiral symmetry breaking in the

large-Nc limit of QCD-like theories, Phys. Lett. B 424 (1998) 335 [hep-ph/9712457];

S. Peris, M. Perrottet and E. de Rafael, Matching long and short distances in large-Nc QCD,

JHEP 05 (1998) 011 [hep-ph/9805442].

– 21 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB250%2C465
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD53%2C315
http://arxiv.org/abs/hep-ph/9408346
http://jhep.sissa.it/stdsearch?paper=02%281999%29020
http://jhep.sissa.it/stdsearch?paper=02%281999%29020
http://arxiv.org/abs/hep-ph/9902437
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC23%2C539
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC23%2C539
http://arxiv.org/abs/hep-ph/0110400
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB346%2C17
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ZEPYA%2CC50%2C255
http://arxiv.org/abs/hep-lat/0611024
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB72%2C461
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB160%2C57
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C45%2C100
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C45%2C100
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IJTPB%2CB38%2C1113
http://arxiv.org/abs/hep-th/9711200
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB41%2C609
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD39%2C1947
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB321%2C311
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C096002
http://arxiv.org/abs/hep-ph/0607152
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB223%2C425
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA11%2C1069
http://arxiv.org/abs/hep-ph/9510338
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB504%2C381
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB504%2C381
http://arxiv.org/abs/hep-ph/9701400
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB424%2C335
http://arxiv.org/abs/hep-ph/9712457
http://jhep.sissa.it/stdsearch?paper=05%281998%29011
http://arxiv.org/abs/hep-ph/9805442


J
H
E
P
0
5
(
2
0
0
7
)
0
4
0

[14] A. Pich, Present status of chiral perturbation theory, Int. J. Mod. Phys. A 20 (2005) 1613

[hep-ph/0410322].

[15] S. Peris, Electroweak matrix elements at large-Nc: matching quarks to mesons,

hep-ph/0204181;

E. de Rafael, Analytic approaches to kaon physics, Nucl. Phys. 119 (Proc. Suppl.) (2003) 71

[hep-ph/0210317].

[16] S. Peris, M. Perrottet and E. de Rafael, Two loop electroweak corrections to the muon G-2: a

new class of hadronic contributions, Phys. Lett. B 355 (1995) 523 [hep-ph/9505405];

M. Knecht, S. Peris, M. Perrottet and E. de Rafael, Decay of pseudoscalars into lepton pairs

and large-Nc QCD, Phys. Rev. Lett. 83 (1999) 5230 [hep-ph/9908283];

M.F.L. Golterman and S. Peris, The 7/11 rule: an estimate of mρ/fπ, Phys. Rev. D 61

(2000) 034018 [hep-ph/9908252];

M. Knecht, S. Peris and E. de Rafael, A critical reassessment of Q(7) and Q(8) matrix

elements, Phys. Lett. B 508 (2001) 117 [hep-ph/0102017];

M. Knecht and A. Nyffeler, Resonance estimates of O(p6) low-energy constants and QCD

short-distance constraints, Eur. Phys. J. C 21 (2001) 659 [hep-ph/0106034];

M. Knecht, S. Peris, M. Perrottet and E. De Rafael, Electroweak hadronic contributions to

Gµ-2, JHEP 11 (2002) 003 [hep-ph/0205102];

M. Golterman and S. Peris, Analytic estimates for penguin operators in quenched QCD,

Phys. Rev. D 68 (2003) 094506 [hep-lat/0306028];

T. Hambye, S. Peris and E. de Rafael, ∆i = 1/2 and ǫ′/ǫ in large-Nc QCD, JHEP 05 (2003)

027 [hep-ph/0305104];

V. Cirigliano, G. Ecker, M. Eidemuller, A. Pich and J. Portoles, The < V AP > Green

function in the resonance region, Phys. Lett. B 596 (2004) 96 [hep-ph/0404004];

J. Bijnens, E. Gamiz and J. Prades, Hadronic matrix elements for kaons, Nucl. Phys. 133

(Proc. Suppl.) (2004) 245 [hep-ph/0309216];

V. Cirigliano et al., The < SPP > Green function and SU(3) breaking in Kl3 decays, JHEP

04 (2005) 006 [hep-ph/0503108]; Towards a consistent estimate of the chiral low-energy

constants, Nucl. Phys. B 753 (2006) 139 [hep-ph/0603205];

J. Bijnens, E. Gamiz and J. Prades, The BK kaon parameter in the chiral limit, JHEP 03

(2006) 048 [hep-ph/0601197].

[17] M. Golterman and S. Peris, On the use of the operator product expansion to constrain the

hadron spectrum, Phys. Rev. D 67 (2003) 096001 [hep-ph/0207060].

[18] J. Bijnens, E. Gamiz, E. Lipartia and J. Prades, QCD short-distance constraints and

hadronic approximations, JHEP 04 (2003) 055 [hep-ph/0304222].

[19] S. Friot, D. Greynat and E. de Rafael, Chiral condensates, Q(7) and Q(8) matrix elements

and large-Nc QCD, JHEP 10 (2004) 043 [hep-ph/0408281].

[20] G.A. Baker and P. Graves-Morris, Pade approximants, Encyclopedia of Mathematics and its

Applications, Cambridge Univ. Press (1996).

[21] G.A. Baker, Essentials of pade approximants, Academic Press (1975).

[22] C. Pommerenke, Pade approximants and convergence in capacity, J. Math. Anal. Appl. 41

(1973) 775;

Reviewed in ref. [20], Section 6.5, Theorem 6.5.4, Collorary 1.

[23] S. Peris, Large-Nc QCD and pade approximant theory, Phys. Rev. D 74 (2006) 054013

[hep-ph/0603190].

– 22 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA20%2C1613
http://arxiv.org/abs/hep-ph/0410322
http://arxiv.org/abs/hep-ph/0204181
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C119%2C71
http://arxiv.org/abs/hep-ph/0210317
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB355%2C523
http://arxiv.org/abs/hep-ph/9505405
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C83%2C5230
http://arxiv.org/abs/hep-ph/9908283
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD61%2C034018
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD61%2C034018
http://arxiv.org/abs/hep-ph/9908252
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB508%2C117
http://arxiv.org/abs/hep-ph/0102017
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC21%2C659
http://arxiv.org/abs/hep-ph/0106034
http://jhep.sissa.it/stdsearch?paper=11%282002%29003
http://arxiv.org/abs/hep-ph/0205102
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C094506
http://arxiv.org/abs/hep-lat/0306028
http://jhep.sissa.it/stdsearch?paper=05%282003%29027
http://jhep.sissa.it/stdsearch?paper=05%282003%29027
http://arxiv.org/abs/hep-ph/0305104
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB596%2C96
http://arxiv.org/abs/hep-ph/0404004
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C133%2C245
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C133%2C245
http://arxiv.org/abs/hep-ph/0309216
http://jhep.sissa.it/stdsearch?paper=04%282005%29006
http://jhep.sissa.it/stdsearch?paper=04%282005%29006
http://arxiv.org/abs/hep-ph/0503108
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB753%2C139
http://arxiv.org/abs/hep-ph/0603205
http://jhep.sissa.it/stdsearch?paper=03%282006%29048
http://jhep.sissa.it/stdsearch?paper=03%282006%29048
http://arxiv.org/abs/hep-ph/0601197
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD67%2C096001
http://arxiv.org/abs/hep-ph/0207060
http://jhep.sissa.it/stdsearch?paper=04%282003%29055
http://arxiv.org/abs/hep-ph/0304222
http://jhep.sissa.it/stdsearch?paper=10%282004%29043
http://arxiv.org/abs/hep-ph/0408281
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C054013
http://arxiv.org/abs/hep-ph/0603190


J
H
E
P
0
5
(
2
0
0
7
)
0
4
0

[24] A.A. Migdal, Multicolor QCD as dual resonance theory, Ann. Phys. (NY) 109 (1977) 365.

[25] O. Cata, Migdal’s model and holography, hep-ph/0701196; Migdal’s model and holography,

hep-ph/0701196; Towards understanding Regge trajectories in holographic QCD,

hep-ph/0605251.

[26] See, e.g., M. Golterman and S. Peris, Large-Nc QCD meets Regge theory: the example of

spin-one two-point functions, JHEP 01 (2001) 028 [hep-ph/0101098];

A.A. Andrianov, S.S. Afonin, D. Espriu and V.A. Andrianov, Matching meson resonances to

ope in QCD, Int. J. Mod. Phys. A 21 (2006) 885 [hep-ph/0509144].

[27] J. Erlich, G.D. Kribs and I. Low, Emerging holography, Phys. Rev. D 73 (2006) 096001

[hep-th/0602110] and references therein;

A. Falkowski and M. Perez-Victoria, Holography, pade approximants and deconstruction,

JHEP 02 (2007) 086 [hep-ph/0610326].

[28] O. Cata, M. Golterman and S. Peris, Duality violations and spectral sum rules, JHEP 08

(2005) 076 [hep-ph/0506004].

[29] Discussion session led by J. Donoghue at the workshop Matching light quarks to hadrons,

Benasque Center for Science, Benasque, Spain, July-August 2004,

http://benasque.ecm.ub.es/2004quarks/2004quarks.htm.

[30] C. Diaz-Mendoza, P. Gonzalez-Vera and R. Orive, On the convergence of two-point partial
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